Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1287504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566991

RESUMO

Introduction: We sought to determine pre-infection correlates of protection against SARS-CoV-2 post-vaccine inzfections (PVI) acquired during the first Omicron wave in the United States. Methods: Serum and saliva samples from 176 vaccinated adults were collected from October to December of 2021, immediately before the Omicron wave, and assessed for SARS-CoV-2 Spike-specific IgG and IgA binding antibodies (bAb). Sera were also assessed for bAb using commercial assays, and for neutralization activity against several SARS-CoV-2 variants. PVI duration and severity, as well as risk and precautionary behaviors, were assessed by questionnaires. Results: Serum anti-Spike IgG levels assessed by research assay, neutralization titers against Omicron subvariants, and low home risk scores correlated with protection against PVIs after multivariable regression analysis. Commercial assays did not perform as well as research assay, likely due to their lower dynamic range. Discussion: In the 32 participants that developed PVI, anti-Spike IgG bAbs correlated with lower disease severity and shorter duration of illness.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Anticorpos Antivirais , Imunoglobulina G
2.
Front Microbiol ; 15: 1387208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659991

RESUMO

Infection with either Rickettsia prowazekii or Orientia tsutsugamushi is common, yet diagnostic capabilities are limited due to the short window for positive identification. Until now, although targeted enrichment had been applied to increase sensitivity of sequencing-based detection for various microorganisms, it had not been applied to sequencing of R. prowazekii in clinical samples. Additionally, hybridization-based targeted enrichment strategies had only scarcely been applied to qPCR of any pathogens in clinical samples. Therefore, we tested a targeted enrichment technique as a proof of concept and found that it dramatically reduced the limits of detection of these organisms by both qPCR and high throughput sequencing. The enrichment methodology was first tested in contrived clinical samples with known spiked-in concentrations of R. prowazekii and O. tsutsugamushi DNA. This method was also evaluated using clinical samples, resulting in the simultaneous identification and characterization of O. tsutsugamushi directly from clinical specimens taken from sepsis patients. We demonstrated that the targeted enrichment technique is helpful by lowering the limit of detection, not only when applied to sequencing, but also when applied to qPCR, suggesting the technique could be applied more broadly to include other assays and/or microbes for which there are limited diagnostic or detection modalities.

3.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146724

RESUMO

The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the disparity between developed and developing countries for infectious disease surveillance and the sequencing of pathogen genomes. The majority of SARS-CoV-2 sequences published are from Europe, North America, and Asia. Between April 2020 and January 2022, 795 SARS-CoV-2-positive nares swabs from individuals in the U.S. Navy installation Camp Lemonnier, Djibouti, were collected, sequenced, and analyzed. In this study, we described the results of genomic sequencing and analysis for 589 samples, the first published viral sequences for Djibouti, including 196 cases of vaccine breakthrough infections. This study contributes to the knowledge base of circulating SARS-CoV-2 lineages in the under-sampled country of Djibouti, where only 716 total genome sequences are available at time of publication. Our analysis resulted in the detection of circulating variants of concern, mutations of interest in lineages in which those mutations are not common, and emerging spike mutations.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Djibuti/epidemiologia , Genoma Viral , Humanos , Mutação , SARS-CoV-2/genética
4.
Front Microbiol ; 13: 960932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033872

RESUMO

Early in the pandemic, in March of 2020, an outbreak of COVID-19 occurred aboard the aircraft carrier USS Theodore Roosevelt (CVN-71), during deployment in the Western Pacific. Out of the crew of 4,779 personnel, 1,331 service members were suspected or confirmed to be infected with SARS-CoV-2. The demographic, epidemiologic, and laboratory findings of service members from subsequent investigations have characterized the outbreak as widespread transmission of virus with relatively mild symptoms and asymptomatic infection among mostly young healthy adults. At the time, there was no available vaccination against COVID-19 and there was very limited knowledge regarding SARS-CoV-2 mutation, dispersal, and transmission patterns among service members in a shipboard environment. Since that time, other shipboard outbreaks from which data can be extracted have occurred, but these later shipboard outbreaks have occurred largely in settings where the majority of the crew were vaccinated, thereby limiting spread of the virus, shortening duration of the outbreaks, and minimizing evolution of the virus within those close quarters settings. On the other hand, since the outbreak on the CVN-71 occurred prior to widespread vaccination, it continued over the course of roughly two months, infecting more than 25% of the crew. In order to better understand genetic variability and potential transmission dynamics of COVID-19 in a shipboard environment of immunologically naïve, healthy individuals, we performed whole-genome sequencing and virus culture from eighteen COVID-19-positive swabs collected over the course of one week. Using the unique variants identified in those genomes, we detected seven discrete groups of individuals within the population aboard CVN-71 infected with viruses of distinct genomic signature. This is in stark contrast to a recent outbreak aboard another U.S. Navy ship with >98% vaccinated crew after a port visit in Reykjavik, Iceland, where the outbreak lasted only approximately 2 weeks and the virus was clonal. Taken together, these results demonstrate the utility of sequencing from complex clinical samples for molecular epidemiology and they also suggest that a high rate of vaccination among a population in close communities may greatly reduce spread, thereby restricting evolution of the virus.

5.
Epidemiology ; 33(6): 797-807, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944149

RESUMO

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Assuntos
COVID-19 , Surtos de Doenças , Militares , COVID-19/epidemiologia , COVID-19/prevenção & controle , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Masculino , Militares/estatística & dados numéricos , Filogenia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
6.
Nat Commun ; 13(1): 3776, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773283

RESUMO

In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Terapia por Fagos , Infecções por Acinetobacter/terapia , Acinetobacter baumannii/genética , Idoso , Bacteriófagos/genética , Genômica , Humanos
8.
Open Forum Infect Dis ; 9(3): ofac030, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35198647

RESUMO

BACKGROUND: The frequency of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unclear and may be influenced by how symptoms are evaluated. In this study, we sought to determine the frequency of asymptomatic SARS-CoV-2 infections in a prospective cohort of health care workers (HCWs). METHODS: A prospective cohort of HCWs, confirmed negative for SARS-CoV-2 exposure upon enrollment, were evaluated for SARS-CoV-2 infection by monthly analysis of SARS-CoV-2 antibodies as well as referral for polymerase chain reaction testing whenever they exhibited symptoms of coronavirus disease 2019 (COVID-19). Participants completed the standardized and validated FLU-PRO Plus symptom questionnaire scoring viral respiratory disease symptom intensity and frequency at least twice monthly during baseline periods of health and each day they had any symptoms that were different from their baseline. RESULTS: Two hundred sixty-three participants were enrolled between August 25 and December 31, 2020. Through February 28, 2021, 12 participants were diagnosed with SARS-CoV-2 infection. Symptom analysis demonstrated that all 12 had at least mild symptoms of COVID-19, compared with baseline health, near or at time of infection. CONCLUSIONS: These results suggest that asymptomatic SARS-CoV-2 infection in unvaccinated, immunocompetent adults is less common than previously reported. While infectious inoculum doses and patient factors may have played a role in the clinical manifestations of SARS-CoV-2 infections in this cohort, we suspect that the high rate of symptomatic disease was due primarily to participant attentiveness to symptoms and collection of symptoms in a standardized, prospective fashion. These results have implications for studies that estimate SARS-CoV-2 infection prevalence and for public health measures to control the spread of this virus.

9.
Pathogens ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959544

RESUMO

We used epidemiologic and viral genetic information to identify a case of likely reinfection in an otherwise healthy, young Marine recruit enrolled in the prospective, longitudinal COVID-19 Health Action Response for Marines (CHARM) study, and we paired these findings with serological studies. This participant had a positive RT-PCR to SARS-CoV-2 upon routine sampling on study day 7, although he was asymptomatic at that time. He cleared the infection within seven days. On study day 46, he had developed symptoms consistent with COVID-19 and tested positive by RT-PCR for SARS-CoV-2 again. Viral whole genome sequencing was conducted from nares swabs at multiple time points. The day 7 sample was determined to be lineage B.1.340, whereas both the day 46 and day 49 samples were B.1.1. The first positive result for anti-SARS-CoV-2 IgM serology was collected on day 49 and for IgG on day 91. This case appears most consistent with a reinfection event. Our investigation into this case is unique in that we compared sequence data from more than just paired specimens, and we also assayed for immune response after both the initial infection and the later reinfection. These data demonstrate that individuals who have experienced an infection with SARS-CoV-2 may fail to generate effective or long-lasting immunity, similar to endemic human beta coronaviruses.

10.
BMC Genomics ; 22(1): 733, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627149

RESUMO

BACKGROUND: Functional genome annotation is the process of labelling functional genomic regions with descriptive information. Manual curation can produce higher quality genome annotations than fully automated methods. Manual annotation efforts are time-consuming and complex; however, software can help reduce these drawbacks. RESULTS: We created Manual Annotation Studio (MAS) to improve the efficiency of the process of manual functional annotation prokaryotic and viral genomes. MAS allows users to upload unannotated genomes, provides an interface to edit and upload annotations, tracks annotation history and progress, and saves data to a relational database. MAS provides users with pertinent information through a simple point and click interface to execute and visualize results for multiple homology search tools (blastp, rpsblast, and HHsearch) against multiple databases (Swiss-Prot, nr, CDD, PDB, and an internally generated database). MAS was designed to accept connections over the local area network (LAN) of a lab or organization so multiple users can access it simultaneously. MAS can take advantage of high-performance computing (HPC) clusters by interfacing with SGE or SLURM and data can be exported from MAS in a variety of formats (FASTA, GenBank, GFF, and excel). CONCLUSIONS: MAS streamlines and provides structure to manual functional annotation projects. MAS enhances the ability of users to generate, interpret, and compare results from multiple tools. The structure that MAS provides can improve project organization and reduce annotation errors. MAS is ideal for team-based annotation projects because it facilitates collaboration.


Assuntos
Bases de Dados Genéticas , Genoma Microbiano , Bases de Dados de Proteínas , Genoma Viral , Software
12.
Nat Commun ; 12(1): 763, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536429

RESUMO

Human and animal infections with bacteria of the genus Sarcina (family Clostridiaceae) are associated with gastric dilation and emphysematous gastritis. However, the potential roles of sarcinae as commensals or pathogens remain unclear. Here, we investigate a lethal disease of unknown etiology that affects sanctuary chimpanzees (Pan troglodytes verus) in Sierra Leone. The disease, which we have named "epizootic neurologic and gastroenteric syndrome" (ENGS), is characterized by neurologic and gastrointestinal signs and results in death of the animals, even after medical treatment. Using a case-control study design, we show that ENGS is strongly associated with Sarcina infection. The microorganism is distinct from Sarcina ventriculi and other known members of its genus, based on bacterial morphology and growth characteristics. Whole-genome sequencing confirms this distinction and reveals the presence of genetic features that may account for the unusual virulence of the bacterium. Therefore, we propose that this organism be considered the representative of a new species, named "Candidatus Sarcina troglodytae". Our results suggest that a heretofore unrecognized complex of related sarcinae likely exists, some of which may be highly virulent. However, the potential role of "Ca. S. troglodytae" in the etiology of ENGS, alone or in combination with other factors, remains a topic for future research.


Assuntos
Doenças dos Símios Antropoides/diagnóstico , Enfisema/diagnóstico , Gastrite/diagnóstico , Infecções por Bactérias Gram-Positivas/diagnóstico , Sarcina/genética , Animais , Doenças dos Símios Antropoides/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Enfisema/microbiologia , Gastrite/microbiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Humanos , Pan troglodytes , Sarcina/classificação , Sarcina/patogenicidade , Serra Leoa , Virulência/genética , Sequenciamento Completo do Genoma/métodos
13.
Front Med (Lausanne) ; 8: 836658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155489

RESUMO

The emergence of SARS-CoV-2 variants complicates efforts to control the COVID-19 pandemic. Increasing genomic surveillance of SARS-CoV-2 is imperative for early detection of emerging variants, to trace the movement of variants, and to monitor effectiveness of countermeasures. Additionally, determining the amount of viable virus present in clinical samples is helpful to better understand the impact these variants have on viral shedding. In this study, we analyzed nasal swab samples collected between March 2020 and early November 2021 from a cohort of United States (U.S.) military personnel and healthcare system beneficiaries stationed worldwide as a part of the Defense Health Agency's (DHA) Global Emerging Infections Surveillance (GEIS) program. SARS-CoV-2 quantitative real time reverse-transcription PCR (qRT-PCR) positive samples were characterized by next-generation sequencing and a subset was analyzed for isolation and quantification of viable virus. Not surprisingly, we found that the Delta variant is the predominant strain circulating among U.S. military personnel beginning in July 2021 and primarily represents cases of vaccine breakthrough infections (VBIs). Among VBIs, we found a 50-fold increase in viable virus in nasal swab samples from Delta variant cases when compared to cases involving other variants. Notably, we found a 40-fold increase in viable virus in nasal swab samples from VBIs involving Delta as compared to unvaccinated personnel infected with other variants prior to the availability of approved vaccines. This study provides important insight about the genomic and virological characterization of SARS-CoV-2 isolates from a unique study population with a global presence.

15.
Front Genet ; 11: 577563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101395

RESUMO

Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory's self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.

16.
PLoS Negl Trop Dis ; 14(8): e0008381, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804954

RESUMO

The world's most consequential pathogens occur in regions with the fewest diagnostic resources, leaving the true burden of these diseases largely under-represented. During a prospective observational study of sepsis in Takeo Province Cambodia, we enrolled 200 patients over an 18-month period. By coupling traditional diagnostic methods such as culture, serology, and PCR to Next Generation Sequencing (NGS) and advanced statistical analyses, we successfully identified a pathogenic cause in 46.5% of our cohort. In all, we detected 25 infectious agents in 93 patients, including severe threat pathogens such as Burkholderia pseudomallei and viral pathogens such as Dengue virus. Approximately half of our cohort remained undiagnosed; however, an independent panel of clinical adjudicators determined that 81% of those patients had infectious causes of their hospitalization, further underscoring the difficulty of diagnosing severe infections in resource-limited settings. We garnered greater insight as to the clinical features of severe infection in Cambodia through analysis of a robust set of clinical data.


Assuntos
Sepse/epidemiologia , Sepse/etiologia , Sepse/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/epidemiologia , Camboja/epidemiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Estudos Prospectivos , Sepse/virologia , Análise de Sequência de RNA , Testes Sorológicos , Viroses/diagnóstico , Viroses/epidemiologia , Vírus/classificação
17.
BMC Infect Dis ; 19(1): 905, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660864

RESUMO

BACKGROUND: Antibiotic resistance is rising at disturbing rates and contributes to the deaths of millions of people yearly. Antibiotic resistant infections disproportionately affect those with immunocompromising conditions, chronic colonization, and frequent antibiotic use such as transplant patients or those with cystic fibrosis. However, clinicians lack the diagnostic tools to confidently diagnose and treat infections, leading to widespread use of empiric broad spectrum antimicrobials, often for prolonged duration. CASE PRESENTATION: A 22 year-old Caucasian female with cystic fibrosis received a bilateral orthotopic lung transplantation 5 months prior to the index hospitalization. She underwent routine surveillance bronchoscopy and was admitted for post-procedure fever. A clear cause of infection was not identified by routine methods. Imaging and bronchoscopic lung biopsy did not identify an infectious agent or rejection. She was treated with a prolonged course of antimicrobials targeting known colonizing organisms from prior bronchoalveolar lavage cultures (Pseudomonas, Staphylococcus aureus, and Aspergillus). However, we identified Stenotrophomonas maltophilia in two independent whole blood samples using direct-pathogen sequencing, which was not identified by other methods. CONCLUSIONS: This case represents a common clinical conundrum: identification of infection in a high-risk, complex patient. Here, direct-pathogen sequencing identified a pathogen that would not otherwise have been identified by common techniques. Had results been clinically available, treatment could have been customized, avoiding a prolonged course of broad spectrum antimicrobials that would only exacerbate resistance. Direct-pathogen sequencing is poised to fill a diagnostic gap for pathogen identification, allowing early identification and customization of treatment in a culture-independent, pathogen-agnostic manner.


Assuntos
Broncoscopia/efeitos adversos , Febre/etiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Stenotrophomonas maltophilia/genética , Antibacterianos/uso terapêutico , Lavagem Broncoalveolar , Tomada de Decisão Clínica , Fibrose Cística/cirurgia , Farmacorresistência Bacteriana , Feminino , Febre/tratamento farmacológico , Humanos , Transplante de Pulmão , Pseudomonas/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Resultado do Tratamento , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-30637391

RESUMO

Pseudomonas aeruginosa is known to cause persistent bloodstream infections associated with left ventricular assist devices (LVAD). Here, we present the high-quality draft genome assembly for a clinical isolate, P. aeruginosa 268. The genome sequence is available in GenBank under accession number CP032761.

19.
Viruses ; 10(4)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642590

RESUMO

Multi-drug resistance is increasing at alarming rates. The efficacy of phage therapy, treating bacterial infections with bacteriophages alone or in combination with traditional antibiotics, has been demonstrated in emergency cases in the United States and in other countries, however remains to be approved for wide-spread use in the US. One limiting factor is a lack of guidelines for assessing the genomic safety of phage candidates. We present the phage characterization workflow used by our team to generate data for submitting phages to the Federal Drug Administration (FDA) for authorized use. Essential analysis checkpoints and warnings are detailed for obtaining high-quality genomes, excluding undesirable candidates, rigorously assessing a phage genome for safety and evaluating sequencing contamination. This workflow has been developed in accordance with community standards for high-throughput sequencing of viral genomes as well as principles for ideal phages used for therapy. The feasibility and utility of the pipeline is demonstrated on two new phage genomes that meet all safety criteria. We propose these guidelines as a minimum standard for phages being submitted to the FDA for review as investigational new drug candidates.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Terapia por Fagos/normas , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Genômica , Guias como Assunto , Humanos , Filogenia , Reprodutibilidade dos Testes , Fluxo de Trabalho
20.
Genome Biol Evol ; 5(2): 338-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23345457

RESUMO

It has been long known that insect-infecting trypanosomatid flagellates from the genera Angomonas and Strigomonas harbor bacterial endosymbionts (Candidatus Kinetoplastibacterium or TPE [trypanosomatid proteobacterial endosymbiont]) that supplement the host metabolism. Based on previous analyses of other bacterial endosymbiont genomes from other lineages, a stereotypical path of genome evolution in such bacteria over the duration of their association with the eukaryotic host has been characterized. In this work, we sequence and analyze the genomes of five TPEs, perform their metabolic reconstruction, do an extensive phylogenomic analyses with all available Betaproteobacteria, and compare the TPEs with their nearest betaproteobacterial relatives. We also identify a number of housekeeping and central metabolism genes that seem to have undergone positive selection. Our genome structure analyses show total synteny among the five TPEs despite millions of years of divergence, and that this lineage follows the common path of genome evolution observed in other endosymbionts of diverse ancestries. As previously suggested by cell biology and biochemistry experiments, Ca. Kinetoplastibacterium spp. preferentially maintain those genes necessary for the biosynthesis of compounds needed by their hosts. We have also shown that metabolic and informational genes related to the cooperation with the host are overrepresented amongst genes shown to be under positive selection. Finally, our phylogenomic analysis shows that, while being in the Alcaligenaceae family of Betaproteobacteria, the closest relatives of these endosymbionts are not in the genus Bordetella as previously reported, but more likely in the Taylorella genus.


Assuntos
Betaproteobacteria/genética , RNA Ribossômico 16S/genética , Simbiose/genética , Trypanosomatina/genética , Animais , Betaproteobacteria/metabolismo , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia , Trypanosomatina/crescimento & desenvolvimento , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...